# IVITE <br> <br> StyleWav: Guiding Image Synthesis <br> <br> StyleWav: Guiding Image Synthesis Using Audio 

Phuc (Jerry) Ngo ${ }^{1}$, Swami Sankaranarayanan², Phillip Isola ${ }^{3}$<br>${ }^{1}$ Department of Computer Science and Maths, Beloit College<br>${ }^{2,}{ }^{3}$ Department of Electrical Engineering \& Computer Science, MIT



## CLIP-Guiding Generative Algorithm

- Recent works in multimodality systems have enabled cross modality generation


Text2Mesh, Michel et al, 2021


CLIP Guided Diffusion,
MidJourney


CLIP + VQGAN, nerdyrodent


CLIPDraw,
Frans et al


Pixray, dribnet

## Neural Network and Representation

Representation : The second to last feature vector of neural network


- Representation of the same object is clustered together
- The purpose of contrastive training is to further encourage representations of the same class to be near each other and push other classes' representations far away


## WAV2CLIP: Extending CLIP to Music

- This is a distilled model from CLIP
- It embed audio to the joint representation space of CLIP
- Could perform multiple downstream tasks



## Knowledge Distillation

- Used to transfer knowledge from a bigger model to a smaller model
- Teach model to learn compressed representation without the loss of validity
- Tackle limited memory and computational capacity issue when deploying big deep learning model



## Distillation Type



Response based


Feature based

## VGGSound Dataset

- For multimodal learning, we will need a dataset includes different modalities
- VGGSound is audio-visual Youtube video dataset. It includes:
- ~200k 10-second clips
- 309 class
- For distillation, they sample:
- 5-second videos that has 150 frames each
- Get CLIP embeddings for each frames

VGGSound, robots.ox.ac.uk


## WAV2CLIP Distillation Process



CXLoss $=L(f($ Image $)$, Audio $)+L($ Image, $g($ Audio $))$

## Sound to Image Generation

Text/Audio to Image Generation with VQGAN-CLIP


Question: Could we make use of the sound representation to generate more meaningful images?

## GAN Structure



## StyleGAN Architecture



## StyleGAN Result



## StyleWAV Structure



## Loss Function:

$$
\underset{w \in W+}{\arg \min } D_{C}(G(w), t)+\lambda_{L 2}\left\|w-w_{s}\right\|+\lambda_{I D} \mathcal{L}_{I D}(w)
$$

Where $G$ is pretrained StyleGAN, $D_{C}$ is the cosine distance. $T$ is the audio representation. The two lambda is equal to zero when we do free generation.

$$
\mathcal{L}_{I D}=D_{C}\left(R\left(G\left(w_{s}\right)\right), R(G(W))\right)
$$

$R$ is pretrained ArcFace model for face recognition

## Datasets

- 2 sex: male and female
- Each sex has 100

5-second audios from Mozilla Common Voice Dataset

## Image Generation

We're building an open source, multilanguage dataset of voices that anyone can use to train speech-enabled applications.

We believe that large, publicly available voice datasets will foster innovation and healthy commercial competition in machine-
learning based speech technology.

Common Voice's multi-language dataset is already the largest publicly available voice dataset of its kind, but it's not the only one.

Look to this page as a reference hub for other open source voice datasets and, as Common Voice continues to grow, a home for our release updates.

Male Audio


Female Audio

(1)

## StyleWav Snapshot



## T-test

- Perform Welch's t-test on two population of similarity score between two prompts and the same material
- Two mean are significantly different if $p$-value $<=5 \%$

|  | Female |  |
| :--- | ---: | ---: |
| Man Photos | Photos |  |
| this is a photo of a boy | 0.26 | 0.241 |
| this is a photo of a girl | 0.252 | 0.256 |
| have significantly two |  |  |
| different means | yes | yes |

Thank you for listening ngoph@beloit.edu

