Introduction

- Recent big machine learning shows impressive generalization performance for various perception tasks.
- Optical illusions are the product of human biology, learning, and perception.
- Do machine learning models get fooled by optical illusion?

Methods

- We measure the effect on the CLIP models by using images of illusions with different illusion strengths and classifying them into illusory or non-illusory prompts.

Stronger Illusion Effect

"A photo of a star" - Illusory prompt

"A photo of square layers" - Non-illusory prompt

We utilized ChatGPT to generate different pair of prompts for each illusion:

- "Below are annotations for the same image. There are two sets of annotations. The first set of annotation describes the image, and the second one doesn't, which contrast the first annotation, so we can use them for the classification task:"

- We calibrate the association by using content-free probabilities.

Edge Detection Illusion

Vasarely Illusion

- Impose squares with different luminance level
- An invisible X shape gradually appear

Examples of Illusory prompts

- An image of a bright star on a blue background...
- A photo of a blue background with a prominent star...

Examples of non-illusory prompts

- A picture of a stack of boxes in varying shades of blue
- An image of blue boxes arranged in a stack...

Results

Lightness Illusion

Simultaneous Contrast Illusion

- Two circles have the same level of luminance
- The left circle seems lighter than the right one

Examples of Illusory prompts

- A photo of two circles on a gray background, one circle is lighter/darker than the other

Examples of non-Illusory prompts

- A photo of two gray circles of the same size and same shade of gray

Acknowledgement

- We appreciate Professor Yoon Kim’s suggestion of using the calibration method to debias CLIP.
- He also helps adapt the original language model calibration to image-text calibration.