An Application of NEAT and HyperNEAT in Solving A Sliding Tile Puzzle

By Phuc (Jerry) Ngo

ngoph@beloit.edu

The purpose: Create agents that can generalize and play 2048 using genetic algorithm

Travelling Salesman Problem

- Make use of natural selection
- Have a population of possible solutions
- Each candidate has genotype and phenotype
- Guided by the fitness function
- Make improvement using selection, crossover and mutation

Genetic Algorithm

Neuroevolution of

Augmenting Topologies

(NEAT)

What is neuroevolution?

- Is a form of artificial intelligence that uses evolutionary algorithms (eg: genetic algorithm) to generate artificial neural networks.
- Used in tasks like hyperparameter optimization, topology finding and; RL control tasks such as pole balancing or game playing...
- Applied in evolutionary robotics, artificial life...

Why neuroevolution in game

- Is a perfect test-bed for AI
- Game agent is sought in industry

Prior neuroevolution algorithm

- Focus on weights rather than topology
- Has complex structure
- Can't protect innovation from disappearing prematurely

NEAT | Genetic Encoding

Geno	ome (O	Gen	oty	ype)						
Node Genes	Node 1 Sensor	Node Sens	e 2 sor	Node 3 Sensor	Node 4 Output	Nod Hid	e 5 den			
Connect. Genes	In 1 Out 4 Weight 0.7 Enabled Innov 1		In 2 Out 4 Weight-0.5 DISABLED Innov 2		In 3 Out 4 Weight 0.5 Enabled Innov 3		In 2 Out 5 Weight 0.2 Enabled Innov 4	In 5 Out 4 Weight 0.4 Enabled Innov 5	In 1 Out 5 Weight 0.6 Enabled Innov 6	In 4 Out 5 Weight 0.6 Enabled Innov 11

Network (Phenotype)

NEAT | Historical Marking Crossover

NEAT | Speciation & Fitness Sharing

- Topological innovations are protected when competing in their own niches
- Species is divided using the number of excess gene, disjoint genes and average weight difference.

$$\delta = \frac{c_1 E}{N} + \frac{c_2 D}{N} + c_3 \cdot \overline{W}.$$

NEAT | Minimal Initial Structure

- Start with the initial population of uniform networks with zero hidden nodes
- Minimal search space
- New structures are introduced incrementally as structural mutation occurs

Modularity and Regularity in Nature

Compositional Pattern-Producing Network

PicBreeder.org

HyperNEAT

- Use the same technique as NEAT
- Evolve CPPN
- Create weight for the network through applying input to CPPN

The Experiment

2048

- A single-player sliding tile puzzle
- The objective is to achieve the number 2048
- One can continue playing to achieve a better score

	NEAT	HyperNEAT
Number of generation	20/100	20
Population	200	200
Add edge mutation probability	0.5	0.5
Add neuron mutation probability	0.2	0.2
Weight mutation probability	0.8	0.8
Speciation threshold	1.0	1.0
Weight of edges	[-30, 30]	[-30, 30]
Activation Options	sigmoid	tanh , gauss, sin
Elitism	10	10
Max Stagnation	8	5
Species Elitism	2	5

NEAT Graph 100 Generations

NEAT Graph 100 Generations

NEAT vs HyperNEAT 20 generations

Population's average and best fitness

NEAT vs HyperNEAT 20 generations

Conclusion

Because of the random nature of 2048, it makes it hard for the algorithm to master the game.

HyperNEAT performance decays on irregular or task that requires a complex solution.

Thank you for listening

ngoph@beloit.edu

