Jerry Ngo 1

An Application of NEAT and HyperNEAT in
Solving A Sliding Tile Puzzle

Phuc Hong Ngo
Department of Math and Computer Science, Beloit College, Beloit, U.S.A

Abstract. Neuroevolution is a set of algorithms that use evolutionary algorithms to
optimize neural networks without much domain knowledge. We analyze
Neuroevolution of Augmented Topologies (NEAT) and its extension HyperNeat in
this paper. NEAT evolves both the topology and weight values of a network along
with novel ideas of applying speciation, tracking genes, and evolving from simple
structures. HyperNEAT uses similar techniques to evolve networks but instead of
using direct graph encoding as in NEAT, it uses indirect graph encoding. We use a
stochastic single-player game, 2048, as the benchmark problem to compare two
algorithms’ performance. Even though the game is simple, it has the random factor
that may pose a challenge in finding a strategy to achieve a high score. The paper
analyzes the strategy and the performance of NEAT and HyperNEAT in 2048 with
different parameter settings. Furthermore, code and future work are specified at the
end of the paper.

Keywords; component; formatting; style; styling; insert (keywords)

1. Introduction

Game agents are an irreplaceable component in the game industry. They are
non-player characters that interact with the player to better the gaming experience.
However, most agents nowadays deploy a path-finding algorithm or decision tree [1]
to make decisions which leads to a less-human-like and predictable movement [2]. In
addition, in some strategic games, an adaptable and progressive agent is desirable
since its purpose is to challenge and train the player. For these reasons, achieving a
more human Al in-game is a common goal for professional developers.

One way to create a more natural and less repetitive behavior in-game agents is to
use the machine learning technique. Many agents for complex games such as Dota2,
Minecraft, or StarCraft [3] have been created using machine learning and proven to be
able to outperform humans. Some machine learning models that are commonly used
to train agents include Convolutional Neural Networks [4], Long Short-Term Memory
[4], Reinforcement Learning [5], and Neuroevolution [6].

An Application of NEAT and HyperNEAT in Solving A Sliding Tile Puzzle | 1

Jerry Ngo 2

The video game 2048 was released on 9 March 2014 by Gabriele Cirrulli [7]. The
game has a 4x4 grid with some 2 and 4 tiles initially. In every turn, the player can
slide all the tiles to move in one of four directions (right, left, up, down). The tiles will
keep traveling until they either collide with the edge of the board or another tile. If
two tiles with the same value collide, they get merged into one with double the value.
A new tile will also spawn randomly in an empty spot with a value of 2 or 4 after the
player made a move. The game will end if (1) there is no pair of tiles that could be
combined in any direction and (2) the board is full. A common goal of the game is to
reach the 2048 tile. However, players can choose to continue the game and achieve a
higher score.

This research aims to develop a game agent that could play 2048 and achieve a
score as high as possible using neuroevolution techniques. We will use NEAT and its
extension HyperNEAT in this paper.

This paper is organized as follows: Section 2 discusses the relevant literature of
methods of training 2048 agents. Section 3 provides a brief introduction to NEAT and
hyperNEAT. Section 4 contains the results acquired from experiments, and Section 5
discusses the conclusion.

2. Related Work

Two common ways to perceive 2048 are that it is a search problem, or it is a
learning problem [8]. If viewed as a search problem, expectiminimax, and minimax
have been applied and proven to be effective in 2048. Otherwise, reinforcement
learning techniques like Q-learning, temporal difference learning are employed.

Yun Nie [9] used tree search strategies, minimax and expectimax, with the
addition of pruning to reduce the dimensions’ depth. In the paper, they focus on
improving the human heuristic. Their work achieved the highest score of 80728 with
pruned expectimax which outperformed initial unoptimized algorithms.

Tejaswini Mandava [8] developed a framework and module to interact with 2048
GUI’s component. They deploy Q-learning with improved heuristic functions and are
able to solve 2048 in 973 moves.

Marcin Szubert [10] prepared n-tuple networks with a temporal difference
algorithm to play 2048. The system produces agents with a nearly 98% winning rate
on average. Their 1-ply performance is comparable to one of the best computational
search-based agents.

An Application of NEAT and HyperNEAT in Solving A Sliding Tile Puzzle | 2

Jerry Ngo 3

Tuponja Boris [11] attempts to use the Neuroevolution of Augmenting Topologies
to evolve agents to play 2048. However, the game proves to be a challenge for the
method because of the randomness.

Based on the literature review described above, we could have the following
research questions: How does HyperNEAT perform in 2048? Is it better than NEAT?

3. Methodologies

We set up experiments by using two Python libraries for NEAT and HyperNEAT.
Specifically, NEAT-Python [12] for NEAT experiment and PUREPLES [13] (which is
a fork of NEAT-Python) for HyperNEAT. We also use Numpy for vectorized
operators and tkinter for the game UI. The game UI is my modified fork from qw
[14]. The hardware used to conduct the research is Intel 17-8750H CPU 2.20GHz x 12
with 16 GB of RAM.

A. NEAT

NEAT is a neuroevolution algorithm that was developed by Ken Stanley [15]. The
algorithm uses the direct encoding of neural networks and the genotype includes two
genes: node genes and connection genes. The node genes signify whether a node is an
input, a hidden, or an output node. Connectivity genes is a list of edges and their
attributes including information about an edge’s in and out nodes, weight, innovation
number, and if they are enabled or not.

Unlike other neural networks that use fixed topology, NEAT can evolve both its
weight and topology. This gets rid of the lengthy process of trial and error by humans
to choose the suitable structure for each problem [15]. In addition, the topology
chosen by humans won’t always guarantee the best results. Along with evolving
topology, NEAT also deploys three novel ideas: tracking genes history markers,
specification, and complexifying.

The competing convention is defined to be where there is more than one way to
present the phenotype or neural network in our cases. The offspring of such parents
are likely to be damaged. NEAT overcomes this problem by assigning an innovation
number whenever a new gene is added to the population. The innovation starts with 0
and keeps increasing to be assigned to the connections gene. We then can use
innovation numbers to align genes during crossover.

Since NEAT allows mutation on its connection, new edges could be added to
create new structures. However, such changes are likely to introduce nonlinearity and
will get a low fitness level. If they are not protected, they will be eliminated from the
population before they could make any innovation or improvement. NEAT uses the
technique called speciation which would divide the population into species based on
the number of excess genes, disjoint genes, and the average weight differences of
matching genes. The genes in one speciation share the same fitness of their speciation.
This will allow genes to compete in their speciation to preserve innovation.

An Application of NEAT and HyperNEAT in Solving A Sliding Tile Puzzle | 3

Jerry Ngo 4

Lastly, NEAT reduces its search space and minimalizes the final structure by
initializing the population with zero-hidden-node networks. New structures can still
be introduced by mutation as discussed. This feature gives NEAT performance
advantages compared to other algorithms.

B. HyperNEAT

HyperNEAT uses the same techniques as NEAT. However, instead of using direct
encoding, it uses indirect encoding by evolving Compositional Pattern Producing
Neural Network (CPPN).

CPPN was proposed by Ken Stanley to evolve large-scale neural networks that
make use of the geometric regularities and modularity of the problem [16]. CPNN
takes the input of a coordinate in the Cartesian coordinate and outputs the intensity of
that point in such space. The difference between CPPN and ANN is that normally
ANN just has one fixed function for each layer while CPPN can have different types
of functions in different nodes.

But, since CPPN only outputs one value which is spatial information and we need
connectivity information, we need to modify CPPN to take two points instead. This
CPPN is called a connective CPPN and its output is the weight of the edge between
two nodes [17].

HyperNEAT first initialized a population of CPPN with random weight. NEAT
techniques are then used to evolve those CPPN. Each CPPN will produce an ANN
connectivity pattern which can be used to determine the fitness.

We choose HyperNEAT in this study because 2048 has a geometric symmetry. It
can use the information and location of each tile as well as make use of the grid
structure of the game.

4. Evaluation

To evaluate both algorithms, we must choose the configurations for each
algorithms’ parameters to achieve the best result. Through experiment, the following
settings have been chosen for NEAT and HyperNEAT.

Tablel. NEAT HYPERPARAMETERS

Hyperparameters Value

Population Size 200
Default activation function sigmoid
Activation mutate rate 0.0
Activation option sigmoid
Connection mutation probability 0.5
(add/delete)

Node mutation probability 0.2
(add/delete)

An Application of NEAT and HyperNEAT in Solving A Sliding Tile Puzzle | 4

Jerry Ngo

Number of nodes 16,0, 4
(input, hidden, output)
Compatibility threshold 1.0
Elitism 10
Species Elitism 2
Maximum number of unimproved 8
generations before stagnation
Tablell. HyPERNEAT HYPERPARAMETERS

Hyperparameters Value
Population Size 200
Default activation function tanh
Activation mutate rate 0.0
Activation option gauss, sin, tanh
Connection mutation probability 0.5
(add/delete)
Node mutation probability 0.2
(add/delete)
Number of nodes 32,0,1
(input, hidden, output)
Compatibility threshold 1.0
Elitism 10
Species Elitism 5
Maximum number of unimproved 8
generations before stagnation

Based on the hyperparameter settings mentioned in Tables 1 and 2 above, we have
the following best fitness values and the number of species per generation of each

algorithm.

An Application of NEAT and HyperNEAT in Solving A Sliding Tile Puzzle | 5

Jerry Ngo

A. 20 Generations

Population's average and best fitness

4000 /\ / \/ \
/| N
3000 R
—— average
@ —-:= -1sd
é —-- +1sd
2000 best
/‘ﬁ’\.._.d'—--_.-‘-'-— ----- ._—"-""'".-—‘\’--.,‘ﬁ '-.-'/
1000 47 — —
Pt T ————— — — et —— -
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Generations
Fig 1. The population’s average and best fitness over 20 generations of NEAT
Speciation
500 A
400
v
[}
o 300
[
(=5
0
e
@
=N
& 2004
[
100
oA
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Generations
Fig 2. The number of species per generation over 20 generations of NEAT

An Application of NEAT and HyperNEAT in Solving A Sliding Tile Puzzle | 6

Jerry Ngo

Population's average and best fithess

oo | —- 154 A
6000 —__ ;:5:(1 ’/ \ Y
A AN RN/
[N VY

v
wi
L)
Ezmoo ~/ </

0.0 25 5.0 1.5 10.0 12.5 15.0 17.5
Generations

Fig 3. The population’s average and best fitness over 20 generations of HyperNEAT

Speciation
8000
@
2 6000 |
[
o
n
e
@
[=8
@ 4000 A
b
2000 4
04
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Generations
Fig 4. The number of species per generation over 20 generations of HyperNEAT

An Application of NEAT and HyperNEAT in Solving A Sliding Tile Puzzle | 7

Jerry Ngo

B. 100 Generations

Population's average and best fitness

T |
7000 1 — average
1. | h |
6000 4 — = +1sd |
= VU
N , J\JV.VW U\'AUM'N
w4000 f
[
5
= 3000 s S bl — A Ny
St vy A
2000 e A 2 TSR
r~ /_,\...—_
1000 I N A T T
T — — et -
0 20 40 60 80 100
Generations
Fig 5. The population’s average and best fitness over 100 generations of NEAT
Speciation
1200 4

Size per Species

0 20 40 60 80 100
Generations
Fig 6. The number of species per generation over 100 generations of NEAT

An Application of NEAT and HyperNEAT in Solving A Sliding Tile Puzzle | 8

Jerry Ngo 9

Firstly, according to Fig.5, we can see that the NEAT algorithm improves
dramatically in the first 5-7 generations. However, the best fitness just fluctuates for
the future generations even though the average fitness per generation improves. One
way to explain this is because of the stochastic nature of 2048. There are many
random components like the initial starting board, the location of new tiles, etc

Looking at Fig. 3 and Fig. 1, we can see that HyperNEAT achieves a higher score
than NEAT but the average fitness barely improves at all. This could be due to the
fact that HyperNEAT often fails to solve tasks that requires complex solutions [18]

5. Conclusion

To build an agent that is adaptive and human-like is a common task for both
developers and academics. In this paper, we evaluate two neuroevolution algorithms,
NEAT and HyperNEAT, on the game 2048. Even though HyperNEAT outperforms
NEAT in the first few generations, NEAT generally performs better than HyperNEAT
in the long run and the average fitness value does improve which could be due to the
stochastic nature of the game. However, due to several limitations, future research
with better hardware is needed to be able to run both algorithms with a larger number
of generations.

References

[1] Good, Owen S. (2017). "Skyrim mod makes NPC interactions less scripted, more
Sims-like". Polygon

[2] Lara-Cabrera, R., Nogueira-Collazo, M., Cotta, C., & Fernandez-Leiva, A. J. (2015).
Game artificial intelligence: challenges for the scientific community.

[3] Justesen, N., Bontrager, P., Togelius, J., & Risi, S. (2019). Deep learning for video game
playing. IEEE Transactions on Games, 12(1), 1-20.

[4] Vinyals, O., Babuschkin, 1., Chung, J., Mathieu, M., Jaderberg, M., Czarnecki, W. M., ...
& Silver, D. (2019). Alphastar: Mastering the real-time strategy game starcraft ii.
DeepMind blog, 2.

[5]1 Russell, S., & Norvig, P. (2015). Artificial intelligence: a modern approach (Third edition).

[6] Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., & Clune, J. (2017). Deep
neuroevolution: Genetic algorithms are a competitive alternative for training deep neural
networks for reinforcement learning. arXiv preprint arXiv:1712.06567.

[7] https:/play2048.co/

An Application of NEAT and HyperNEAT in Solving A Sliding Tile Puzzle | 9

https://play2048.co/

Jerry Ngo 10

[8] Mandava, T., Kakumanu, V., Yarlagadda, Y., & Murthy, P. S. An Efficient Approach to
Implement 2048 Game Using Artificial Intelligence.

[91 Rodgers, P., & Levine, J. (2014, August). An investigation into 2048 Al strategies. In 2014
IEEE Conference on Computational Intelligence and Games (pp. 1-2). IEEE.

[10] Temporal Difference Learning of N-Tuple Networks for the Game 2048

[11] Szubert, M., & Jaskowski, W. (2014, August). Temporal difference learning of n-tuple

networks for the game 2048. In 2014 IEEE Conference on Computational Intelligence and
Games (pp. 1-8). IEEE.

[12] https://pypi.org/project/neat-python/

[13] https://github.com/ukuleleplayer/pureples

[14] https:/github.com/qw/2048-neat

[15] Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting
topologies. Evolutionary computation, 10(2), 99-127.

[16] Stanley, K. O. (2007). Compositional pattern producing networks: A novel abstraction of
development. Genetic programming and evolvable machines, 8(2), 131-162.

[17] Stanley, K. O., D'Ambrosio, D. B., & Gauci, J. (2009). A hypercube-based encoding for
evolving large-scale neural networks. Artificial life, 15(2), 185-212.

[18] van den Berg, T. G., & Whiteson, S. (2013, July). Critical factors in the performance of
HyperNEAT. In Proceedings of the 15th annual conference on Genetic and evolutionary
computation (pp. 759-766).

An Application of NEAT and HyperNEAT in Solving A Sliding Tile Puzzle | 10

https://pypi.org/project/neat-python/
https://github.com/ukuleleplayer/pureples
https://github.com/qw/2048-neat

